洛谷P2375 [NOI2014]动物园 题解【KMP】

作者: wjyyy 分类: KMP,字符串,解题报告 发布时间: 2018-08-29 10:35

点击量:15

 

    一开始的方向应该对了,但是没有想到合理的优化还是没写出来……

 

题目描述

近日,园长发现动物园中好吃懒做的动物越来越多了。例如企鹅,只会卖萌向游客要吃的。为了整治动物园的不良风气,让动物们凭自己的真才实学向游客要吃的,园长决定开设算法班,让动物们学习算法。

 

某天,园长给动物们讲解KMP算法。

 

园长:“对于一个字符串\(S\),它的长度为\(L\)。我们可以在\(O(L)\)的时间内,求出一个名为\(next\)的数组。有谁预习了\(next\)数组的含义吗?”

 

熊猫:“对于字符串\(S\)的前\(i\)个字符构成的子串,既是它的后缀又是它的前缀的字符串中(它本身除外),最长的长度记作\(next[i]\)。”

 

园长:“非常好!那你能举个例子吗?”

 

熊猫:“例\(S\)为abcababc,则\(next[5]=2\)。因为\(S\)的前\(5\)个字符为abcabab既是它的后缀又是它的前缀,并且找不到一个更长的字符串满足这个性质。同理,还可得出\(next[1]=next[2]=next[3]=0,next[4]=next[6]=1,next[7]=2,next[8]=3\)。”

 

园长表扬了认真预习的熊猫同学。随后,他详细讲解了如何在\(O(L)\)的时间内求出\(next\)数组。

 

下课前,园长提出了一个问题:“KMP算法只能求出\(next\)数组。我现在希望求出一个更强大num数组一一对于字符串\(S\)的前\(i\)个字符构成的子串,既是它的后缀同时又是它的前缀,并且该后缀与该前缀不重叠,将这种字符串的数量记作\(num[i]\)。例如\(S\)为aaaaa,则\(num[4]=2\)。这是因为\(S\)的前\(4\)个字符为aaaa,其中aaa都满足性质‘既是后缀又是前缀’,同时保证这个后缀与这个前缀不重叠。而aaa虽然满足性质‘既是后缀又是前缀’,但遗憾的是这个后缀与这个前缀重叠了,所以不能计算在内。同理,\(num[1]=0,num[2]=num[3]=1,num[5]=2\)。”

 

最后,园长给出了奖励条件,第一个做对的同学奖励巧克力一盒。听了这句话,睡了一节课的企鹅立刻就醒过来了!但企鹅并不会做这道题,于是向参观动物园的你寻求帮助。你能否帮助企鹅写一个程序求出\(num\)数组呢?

 

特别地,为了避免大量的输出,你不需要输出\(num[i]\)分别是多少,你只需要输出\(\prod_{i=1}^L (num[i]+1)\),对\(1,000,000,007\)取模的结果即可。

其中\(\prod_{i=1}^n (num[i]+1)=(num[1]+1)\times (num[2]+1)\times \dots \times (num[n]+1)\)。

 

输入输出格式

输入格式:

第\(1\)行仅包含一个正整数\(n\) ,表示测试数据的组数。

随后\(n\)行,每行描述一组测试数据。每组测试数据仅含有一个字符串\(S\),\(S\)的定义详见题目描述。数据保证\(S\)中仅含小写字母。输入文件中不会包含多余的空行,行末不会存在多余的空格。

 

输出格式:
 

包含\(n\)行,每行描述一组测试数据的答案,答案的顺序应与输入数据的顺序保持一致。对于每组测试数据,仅需要输出一个整数,表示这组测试数据的答案对\(1,000,000,007\)取模的结果。输出文件中不应包含多余的空行。

输入输出样例

输入样例#1:

3
aaaaa
ab
abcababc
输出样例#1:

36
1
32 

说明

测试点编号 约定
1 \(N≤5,L≤50\)
2 \(N≤5,L≤200\)
3 \(N≤5,L≤200\)
4 \(N≤5,L≤10,000\)
5 \(N≤5,L≤10,000\)
6 \(N≤5,L≤100,000\)
7 \(N≤5,L≤200,000\)
8 \(N≤5,L≤500,000\)
9
10 \(N≤5,L≤1,000,000\)

 

题解:

    既然题面中反复提到KMP,那这道题就应该与KMP紧密相关。

 

    我们知道,当模式串匹配自己失配时,会立即跳到下一个nxt[]去,在nxt[]为0之前,跳了多少个nxt就说明有多少个与后缀相同的前缀,也是nxt的其中一个定义。这样我们就有了\(O(n^2)\)暴力算法,求完\(nxt[i]\)后,递归nxt,看有多少次值在\(\lfloor \frac i2\rfloor\)以内。

 

    考虑优化这个递归过程。因为现在的\(nxt[i]\)可以从前面的\(nxt[j]+1\)转移过来,因此现在的\(num[i]\)也可以从前面的\(num[j]+1\)转移过来。于是\(nxt[i]\)只从\(\le \lfloor \frac i2\rfloor\)转移。于是有了下面这段代码:

for(int i=2,j=0;i<=n;++i)
{
    while(j&&(s[j+1]!=s[i]||j+1>(i>>1)))//保证了只从i>>1转移过来,j+1是考虑匹配上了会增加1
        j=nxt[j];
    if(s[j+1]==s[i])
        ++j;
    nxt[i]=j;
    num[i]=num[j]+1;
}

    交上去……0分?手测了一下发现会有这种情况:

aaaaaaa
      ↑

    \(num[7]\)按照上面的代码应该从\(num[3]\)转移得到\(num[7]=2\),但是观察发现\(num[7]\)应该=3。为什么呢?\(num[3]\)严格遵守了前后缀不重叠,但是到了\(num[7]\)就没有了\(num[3]\)的约束,也就是\(num[3]\)不能从\(num[2]\)转移,但是\(num[7]\)可以,这样中间\(num[2]\)就会丢失。

 

    所以,为了不丢失\(num[2]\)我们试着让\(num[i]\)表示可重叠的相等前后缀的个数,只在统计答案时从前面转移就好了。

 

    其实就是在做第二遍模式串匹配,此时和第一遍一样,只是要控制\(j\le \lfloor \frac i2\rfloor\),然后更新存储答案的\(num1[i]=num[j]+1\)。

 

Code:

#include<cstdio>
#include<cstring>
char s[1000005];
long long num[1000001],num1[1000001];
int nxt[1000001];
void work()
{
    scanf("%s",s+1);
    int n=strlen(s+1);
    num[0]=-1;
    for(int i=2,j=0;i<=n;++i)
    {
        while(j&&s[j+1]!=s[i])
            j=nxt[j];
        if(s[j+1]==s[i])
            ++j;
        nxt[i]=j;
        num[i]=num[j]+1;
    }
    for(int i=2,j=0;i<=n;++i)
    {
        while(j&&(s[j+1]!=s[i]||j+1>(i>>1)))//和上面的比只加了一个条件
            j=nxt[j];
        if(s[j+1]==s[i])
            ++j;
        num1[i]=num[j]+1;//从前面的nxt转移过来
    }
    long long ans=1;
    for(int i=1;i<=n;++i)
    {
        //printf("%d ",num1[i]);调试用
        ans*=num1[i]+1;
        ans%=1000000007;
    }
    printf("%lld\n",ans);
    return;

}
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;++i)
        work();
    return 0;
}

 

说点什么

avatar
  Subscribe  
提醒
/* */