NOIP模拟题 括号序列 题解【DP】【前缀和】

作者: wjyyy 分类: DP,解题报告 发布时间: 2018-06-21 20:43

点击量:17

 

   震惊!括号匹配还能这样做!

 

题目描述

课堂上,Felix刚刚学习了关于括号序列的知识。括号序列是一个只由左括号”(“和右括号”)”构成的序列:进一步的,一个合法的括号序列是指左括号和右括号能够一一匹配的序列。

 

如果用规范的语言说明,一个合法的括号序列可以有以下三种形式:

 

1 s=””(空串),s是一个合法的括号序列

 

2 s=XY,其中X,Y均为合法的括号序列,则S也是一个合法的括号序列;

 

3 s=(X),其中X为合法的括号序列,则S也是一个合法的括号序列。

 

这时老师在黑板上写出了一个括号序列:”()))()”

 

Felix一眼就看出这个序列并不是合法的括号序列。

 

这时老师提出了一个这样的问题:能够在序列中找出连续的一段,把这一段里面的左括号变成右括号,右括号变成左括号,变换之后整个序列可以变成合法的呢?

 

Felix想到,可以把[3..5]进行调换,这样序列就会变为()(()),是一个合法的序列。很明显,不止有一种方法可以使整个序列合法。

 

这时,老师又在黑板上写出了一个长度为N的括号序列。Felix想,能否对这个序列进行至多一次变换,使他变合法呢?

 

输入输出格式

输入格式:

第一行一个整数T,代表数据的组数;接下来T行,每一行一组数据。

 

每组数据一行,代表给出的括号序列。

 

输出格式:

输出共T行,对于每组数据,输出“possible”(可以变换)或者“impossible”(不可变换)。(不含引号)

 

输入输出样例

输入样例#1:
3
()))
)))(
()
输出样例#1:
possible
impossible
possible

说明

对于50%的数据,T<=5,N<=20;

对于100%的数据,T<=10,N<=5000。

 

   我们首先对于区间取反,可以直接用^1,因为'(‘的ASCII码是40,’)’的ASCII码是41。那么我们用\(N^2\)枚举区间,N来检验,这种做法时间复杂度是\(N^3\),可以拿到前50分。

 

   考虑到100分,括号匹配已经占了一个\(O(N)\)了,这样就不适合再进行算法扩展。我们要引进一种新的括号匹配算法,就是前缀和。前缀和记录出现过的左括号和右括号,左括号权值为0,右括号权值为1,我们就可以在O(1)的时间内求出一段区间的左右括号个数。如果一个区间右括号数大于左括号数,那么后面就不可能再匹配上了。

 

   这样我们就有了DP的思路(有点像环状最大两段子段和),分三种状态:还没更新过/在更新序列中/已经更新完,从左向右递推。

 

   每做一个,需要根据它的括号方向确定它的前缀和(把前缀和当作状态进行转移),如果不取反,前缀和同向,取反则反向。如果前缀和运算完后超过了当前长度的一半(右括号个数大于左括号个数)就不能转移。同时还要特判下标是否为负,因为字符串从0处理比较方便,因此不能用第0层。状态数组为f[i][j][k],i表示做到第i个数,j表示前缀和为i,合法前缀和应≤length/2(实际处理要+1再/2,字符串长度+1)。

 

   对于每个没有自始至终都没有更新的状态,有f[i][pre[i]][0]=0;,即为初始状态。转移的状态只有第三维为1,2的,那么只需要关注什么时候取反改变前缀和,多注意细节,这个题还是很好理解的。(如果数组开int是会mle的。。。)

 

Code:

#include<cstdio>
#include<cstring>
bool f[5100][5100][3];
int pre[5100];
char s[6666];
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        memset(f,0,sizeof(f));
        int flag=1;
        scanf("%s",s);
        memset(pre,0,sizeof(pre));//前缀和
        int len=strlen(s)-1;
        for(int i=0;i<=len;i++)
        {
            pre[i]=pre[i-1]+(s[i]&1);//如果是右括号+1
            if(pre[i]>(i+1)/2)//前面发生失配,初始状态不合法,只能通过转移
                flag=0;
            f[i][pre[i]][0]=flag;
        }
        if((len&1)==0)//为奇数直接ban掉
        {
            puts("impossible");
            continue;
        }
        for(int i=0;i<=len;i++)
        {
            for(int j=0;j<=len;j++)
            {
                if(s[i]=='(')
                {
                    if(j+1<=(i+1)/2)
                        f[i][j+1][1]|=f[i-1][j][0]|f[i-1][j][1];//j+1是')'的权值
                    if(j<=(i+1)/2&&i)
                        f[i][j][2]|=f[i-1][j][1]|f[i-1][j][2];
                }
                else
                {
                    if(j<=(i+1)/2)
                    {
                        if(i==0&&j==0)
                            f[i][j][1]=1;
                        else
                        {
                            f[i][j][1]|=f[i-1][j][0]|f[i-1][j][1];
                            if(j+1<=(i+1)/2)
                                f[i][j+1][2]|=f[i-1][j][1]|f[i-1][j][2];
                        }
                    }
                }
            }
        }
        if(f[len][(len+1)/2][0]|f[len][(len+1)/2][1]|f[len][(len+1)/2][2])//最后一个为任意状态,只要前缀和满足即可
            puts("possible");
        else
            puts("impossible");
    }
    return 0;

}

 

说点什么

avatar
  Subscribe  
提醒
/* */